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The semi-empirical, kernel-driven, linear RossThick-LiSparseReciprocal (RTLSR) Bidirectional Reflectance Distribu-
tion Function (BRDF) model is used to generate the routine MODIS BRDF/Albedo product due to its global applica-
bility and the underlying physics. A challenge of thismodel in regard to surface reflectance anisotropy effects comes
from its underestimation of the directional reflectance signatures near the Sun illumination direction; also known as
the hotspot effect. In this study, a method has been developed for improving the ability of the RTLSRmodel to sim-
ulate the magnitude and width of the hotspot effect. The method corrects the volumetric scattering component of
the RTLSR model using an exponential approximation of a physical hotspot kernel, which recreates the hotspot
magnitude andwidth using two free parameters (C1 and C2, respectively). The approach allows one to reconstruct,
with reasonable accuracy, the hotspot effect by adjusting or using the prior values of these two hotspot variables.
Our results demonstrate that: (1) significant improvements in capturing hotspot effect can bemade to this method
by using the inverted hotspot parameters; (2) the reciprocal nature allow this method to bemore adaptive for sim-
ulating the hotspot height andwidthwith high accuracy, especially in caseswhere hotspot signatures are available;
and (3) while the new approach is consistent with the heritage RTLSR model inversion used to estimate intrinsic
narrowband and broadband albedos, it presents some differences for vegetation clumping index (CI) retrievals.
With the hotspot-relatedmodel parameters determined a priori, thismethod offers improved performance for var-
ious ecological remote sensing applications; including the estimation of canopy structure parameters.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Semi-empirical kernel-driven linear Bidirectional Reflectance Distri-
bution Function (BRDF)models have beenwidely used to determine the
properties of complex heterogeneous environments from multi-angle
remote sensing. These models have been used to produce the routine
BRDF/Albedo products from the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Lucht et al. 2000; Schaaf et al. 2002), the

Polarization and Directionality of the Earth's Reflectances (POLDER)
(Bicheron and Leroy 2000; Bacour and Bréon 2005), the Meteosat Sec-
ond Generation (MSG) (Van Leeuwan and Roujean 2002; Geiger et al.
2005), and the Visible/Infrared Imager/Radiometer Suite (VIIRS) on
board the platforms of the Suomi National Polar-orbiting Partnership
(NPP) (Justice et al. 2013). They have been also used to retrieve canopy
structure parameters (e.g., Chopping et al. 2008; Wang et al. 2011; Hill
et al. 2011; He et al. 2012), to examine the improved accuracy of land
cover classification (De Colstoun and Walthall 2006; Jiao et al. 2011;
Jiao and Li 2012), to accumulate and apply prior knowledge of BRDF ar-
chetypal shapes (Li et al. 2001; Jiao et al. 2014; Jiao et al. 2015), to couple
surface reflectance with atmospheric scattering for improving atmo-
spheric correction algorithms (Hu et al., 1999; Wang et al. 2010;
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Román et al. 2010; Litvinov et al. 2011), to correct for the effect of re-
motely-sensed anisotropic reflectance (e.g., Leroy and Roujean 1994;
Li et al. 1996), and for monitoring ecosystem disturbance and vegeta-
tion dynamics (e.g., Friedl et al. 2002, 2010; Zhang et al. 2003).

Despite their wide use, recent studies have recognized that the di-
rectional signatures near the Sun illumination direction (aka the
hotspot effect) are often underestimated by the semi-empirical BRDF
models (e.g., Chen and Cihlar 1997; Maignan et al. 2004; Román et al.
2011) such as RTLSR (Wanner et al. 1995; Lucht et al. 2000). In particu-
lar, the volumetric scattering (aka Ross) component of RTLSR, originally
derived from a horizontally homogeneous plant canopy (Ross 1981),
does not include all possible correlations between the illumination
and observation geometries (Kuusk 1991; Jupp and Strahler 1991; Qin
and Goel 1995). Although the geometric-optical (Li-Strahler) compo-
nent derived from geometric optical (GO)models characterizes a signif-
icant hotspot effect (Li and Strahler 1992), the RTLSRmodel that linearly
combines these two (Ross and Li-Strahler) components has difficulties
to simulate the both the magnitude and signature of the hotspot effect.
This model deficiency, while not significantly impacting an albedo re-
trieval (Huang et al. 2013) (based on the integral of the entire view-illu-
mination hemisphere), may still constrain the application of BRDF
models in retrieving canopy structure parameters (e.g., clumping
index) that need the hotspot amplitude as primary input (e.g., He et
al. 2012; Zhu et al. 2012).

Various efforts have been made to improve the hotspot effect for
such models. Chen and Cihlar (1997) enhanced the hotspot effect of
the kernel-driven Roujean BRDF model by multiplying the model with
an exponential approximation of a physically-based hotspot function.
He et al. (2012) and Zhu et al. (2012) suggested that the Chen and
Cihlar (1997) model might still slightly underestimate the reflectance
magnitude when it is used to extrapolate the hotspot. Recent efforts
have focused on correcting the RossThick kernel with a hotspot factor
(Maignan et al. 2004; hereafter referred to as the Maignan method)
based on the geometrical principles of the intersection of viewed and
sunlit leaf areas (Jupp and Strahler 1991). With a view to improving re-
trieval of clumping index (CI) from the MODIS BRDF product, He et al.
(2012) also developed a correction for the MODIS hotspot amplitude
by adding the difference between POLDER and MODIS hotspot BRFs,
which has also been used to correct the hotspot magnitude of MISR
BRFs for CI retrievals (Pisek, Ryu, Sprintsin & He et al., 2013). On the
other hand, Zhu et al. (2012) corrected the hotspot amplitude bymulti-
plying both the geometric optical scattering and volumetric scattering
items by the exponential approximation of amodified hotspot function;
also based on the MODIS RTLSR model.

In this study, we propose a method for improving the hotspot effect
of the linear RTLSR BRDFmodel. The method revises the RossThick ker-
nel using the corrected exponential approximation of the hotspot func-
tion (Chen and Cihlar 1997, thereafter named RTCLSR model here). The
principle of the formation of the hotspot is based on a canopy gap size
distribution function, but is approximated by using an exponential func-
tionwith two free parameters (C1 and C2) characterizing the height and
width of the hotspot effect. The hotspot kernel within-crown and be-
tween-crown has very similar shapes, and thus can be directly applied
to the scenario where a canopy cover is provided with a uniform leaf
orientation of horizontally homogeneous plant canopies, as was used
in the assumption in deriving this kernel from canopy radiative transfer
theory (Ross 1981). Such a correction to the RossThick kernelmainly ac-
counts for the correlation between two gap probabilities from sun and
view in the hotspot direction, which was not properly considered
when deriving the original RossThick kernel.

To validate this model, the study uses a variety of hotspot data to de-
termine appropriate hotspot-related parameters including POLDER,
MODIS, airborne multiangle Cloud Absorption Radiometer (CAR)
(King et al. 1986; Gatebe et al. 2003; Gatebe et al. 2016; Román et al.
2011), and two field-measured data sets (Irons et al. 1992; Deering et
al. 1999). We also explore the sensitivity of two hotspot parameters

(C1 and C2) to hotspot-fits. Finally, we examined the influences of this
new approach on the retrieval of intrinsic albedos and clumping index.

2. Hotspot data

2.1. POLDER-3 BRDF database

The spaceborne POLDER instrument can sample the land surface for
viewing angles up to 60°–70° and for the full azimuth range, at a coarse
spatial resolution of approximately 6 km. Comprehensive BRDF sam-
pling with large spatial coverage enables this instrument to collect ob-
servations for the development of BRDF modeling, particularly
capturing distinct hotspot signatures. The POLDER-3 sensor onboard
the Polarization and Anisotropy of Reflectances for Atmospheric Sci-
ences coupled with Observations from a Lidar (PARASOL) satellite ac-
quired multiangular measurements for N6 years, which were used to
create four BRDF databases (Bréon et al. 2007). The approach uses POL-
DER data from relatively homogeneous pixels to represent the domi-
nant continental ecosystems. The data are geocoded, calibrated,
atmospherically-corrected and cloudy-screened for acquiring the land
surface bidirectional reflectance factors (BRFs) for each orbit. This
study uses a monthly database containing 14,649 BRFs in 16 IGBP land
cover classes. According to phase angle ξ ≤ 5°, we extract ~14,188
BRFs. The spatial distribution of view and Sun geometries for a typical
POLDER data set, i.e., IGBP_01_20060609brdf_ndvi08.0824_1671, is ex-
emplified in Fig. 1(b). Since the ‘Snow and Ice’ class tends to have max-
imum reflectance in forward scattering direction that current surface
BRF models cannot characterize, we exclude this class from the data-
base. The BRDF signatures are based on inversions of approximately
20 orbits worth of spectral BRF data, for each of the six POLDER bands.
Up to 16 different multiangular measurements for a given POLDER
pixel are included in each orbit. BRFs measured at two typical bands
(red, centered 670 nm and NIR, centered 865 nm) are mainly selected
to assess the hotspot effect reconstructed from the proposedmodel. No-
tably, POLDER-3 spectral measurements are not simultaneous, meaning

Fig. 1. (a) The method to select observations near principal plane and in the proximity of
hotspot direction to be showed in 2-D plots, its formulation is detailed to Appendix A;
spatial distribution of view and sun geometries (b) for a typical POLDER data set, i.e.,
IGBP_01_200609brdf_ndvi08. 0824_1671, and (c) for a typical MODIS data set in
h20v11 for savanna; (d) the observed and modeled BRFs using Maignan method, and
RTCLSR model with C1 = 0.4, and C2 = 4.5° as a function of phase angle for this MODIS
data in the NIR. A minus sign is assigned to the phase angle when θvcosφbθs.
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that each channel is acquiredwith a slightly different viewing geometry.
As such, to analyze the variability of hotspot signatures, this requires a
careful assessment of measurement differences, including normaliza-
tion of the POLDER viewing geometry (Bréon and the Cnes PARASOL
Team 2005).

2.2. MODIS hotspot data

We extracted 2275 MODIS hotspot data sets from one 10° × 10° tile
(h20v11) of MODIS surface reflectance products (MOD09 and MYD09)
at a spatial resolution of approximately 500-m, for 7 solar reflective
bands, and using high-quality BRDF sampling distributions, represented
by a phase angle range ξ ≤ 5°. There are only 80 high-quality hotspot
data sets within a phase angle range of ξ ≤ 1.5°; indicating that MODIS
seldom acquires exact hotspot observations. Each data set consists of
at least 10 observations with a proper directional sampling in approxi-
mate principal plane (PP), and includes fewer hotspot measurements
within the defined area (Fig. 1a). The corresponding MODIS tile
h20v11 captures a wide range of grass-shrub-savanna vegetation
types in the Southern Hemisphere. The 329th Day of Year (DOY) in
2010 represents a maturity season (Zhang et al. 2003). Solar zenith an-
gles (SZAs) mainly ranged from 20° to 40° during the study period. The
full-model inversion quality of the MODIS BRDF/Albedo product
(MCD43A2) accounts for approximately 70% of total pixels. The spatial
distribution of MODIS observations and solar geometry from an ex-
treme data set in this tile is presented in Fig. 1(c), where solid points
are for MODIS observations, and circles are for solar geometries. The
concentric circles are at 20° intervals.

Since the Terra and Aqua MODIS accumulate multiangular observa-
tions through multiple overlapping image swaths, the solar geometry
corresponding to each observation will be different during a typical
(16-day) retrieval period (e.g., approximately 20° for SZA in the
h20v11 tile). This means that MODIS does not capture enough real-
time observations in the principal plane (PP) under identical solar illu-
mination conditions. Here, we adopt the assumption used with the
MODIS BRDF/Albedo product, whereby the surface BRDF shape doesn't
change abruptly for the range of SZAs capturing during a 16-day retriev-
al period. With this assumption, we can accumulate somemultiangular
observations in the proximity of the hotspot (i.e., ξ ≤ 5°) to constrain the
RTCLSR model for acquiring the optimal free parameters describing the
hotpot magnitude (C1) and width (C2). Fig. 1(d) presents an extreme
example that uses the RTCLSR model to reconstruct BRDF shapes as a
function of phase angle for IGBP savanna in the NIR band. Red solid
points represent observations extracted by using this method in the ap-
proximate PP. The black curve is the reconstructed BRDF shape using
the RTCLSR model with C1 = 0.4, and C2 = 4.5° as the optimal values
for the 2275 MODIS data sets in this tile. The SZA was set to 30.58°,
and the observation in the closest proximity to the hotspot direction is
31° (red point). The BRDF shape reconstructed using the Maignan
method (green curve) is provided here for visual comparison.

2.3. Finer resolution measurements

Weused airborne datasets collected by NASA's Cloud Absorption Ra-
diometer (CAR) (Gatebe et al. 2003; Gatebe andKing, 2016),which cap-
tures hotspot signatures over 2 field sites. To acquire multiangular
measurements, the CAR instrument is flown using a clockwise circular
pattern above the surface repeatedly, and observes the reflected solar
radiation at a fine angular resolution (i.e., 0.5° intervals through its
190° aperture at a rate of 100 scans per minute). This sampling scheme
results in a BRDF retrieval that is based on 76,400 and 114,600 BRFs
measurements per channel per complete orbit, which corresponds to
a representative sample of the landscape-level (~5 km) reflected sur-
face (Gatebe et al. 2003). At an altitude of 600m above the targeted sur-
face area and 1° instantaneous field of view (IFOV), the pixel resolution
is about 10m at nadir and about 270m at an 80° viewing angle (Tsay et

al. 1998). The geolocation accuracy of CAR measurements is within an
error margin of 0.3% (~2.0–3.5 m as derived from the high resolution
scene across the entire scan track). This accuracy holds well particularly
with off-nadir looking observations (Gatebe et al. 2007). These CAR
measurements used in this study are averaged at an angular resolution
of 1° in the viewing hemisphere and are taken in the red (0.682 μm)and
NIR (0.870 μm) bands.

CAR data source was mainly from the early Smoke Clouds and Radi-
ation-Brazil (SCAR-B) field campaign on August 1995. Two kinds of data
sets were collected from thewell-defined surfaces of cerrado and dense
forest (Tsay et al. 1998), both measured in Brazil under nearly clear-sky
conditions (http://car.gsfc.nasa.gov/data/index.php?mis_id=5&n=
SCAR-B&l=h). The cerrado comprises a landscape-scale mosaic of four
main vegetation types ranging from campo limpo grassland, through
campo sujo and campo ralowith small (b2m) sparse-to-medium densi-
ty woody plants overlaying grassland, to cerrado sensu stricto with 20–
30 t/ha ofwoody biomass. The dense forest data includes two flight data
(i.e., CAR Flight #1689 and CAR Flight #1693). These two forest data
captured distinct hotspot signatures in the red (CAR Flight #1689) and
the NIR (CAR Flight #1693) bands, and are used in this study. The area
of dense forest was covered by tall trees with a large canopy where
the ground surface is invisible and had a relatively homogeneous sur-
face. Details about these airborne CAR measurements are referred to
Tsay et al. (1998).

To compare thesemodels being explored at a field scale, we also an-
alyzed two high-quality multiangular field data sets reported in previ-
ous studies (e.g. Li et al. 2001; Strugnell et al. 2001; Huang & Jiao
2012; Jiao et al. 2014). These include soil multiangular measurements
(Irons et al. 1992) acquired on a bare field located on a level alluvial
plane within the United States Department of Agriculture Beltsville Ag-
ricultural Research Center, Beltsville, MD. The data were taken from full
view angles and several solar illumination directions. A calibrated
Barnes Model 12-1000 Modular Multiband Radiometer (MMR) with a
15° IFOV was used. Forest multiangular measurements (Deering et al.
1999) were also acquired with PARABOLA instrument with a 15° IFOV
at a black spruce site that was mainly made up of old black spruce
(Picea mariana) with scattered emergent tamarack. The tree height
was b10 m and the total stem density was 8040 live stems/ha, with a
basal area of 40 m2/ha. Canopy closure averaged about 55%, and the
leaf area index (LAI) measured by an LAI-2000 in spring 1994 was 3.7
(Chen et al. 1997a, 1997b).

3. Model and method

3.1. RTLSR model

The semi-empirical, kernel-driven, linear BRDF model is a linear
combination of three basic scattering components: isotropic scattering,
volumetric scattering, and geometric-optical (GO) scattering. This
model adopted a general form (Roujean et al. 1992; Lucht et al. 2000):

R θv; θs;Δϕ;λð Þ ¼ f iso λð Þ þ f vol λð ÞKvol θv; θs;Δϕð Þ
þ f geo λð ÞKgeo θv; θs;Δϕð Þ ð1Þ

where fiso(λ), fvol(λ) and fgeo(λ) are the spectrally dependentmodel pa-
rameters. Kvol(θv,θs,Δϕ) and Kgeo(θv,θs,Δϕ) are kernel functions of view
zenith θv, illumination zenith θs and relative azimuth Δϕ and provide
shapes for volumetric scattering and geometric-optical scattering
BRDFs; fiso(λ) is a spectral constant for isotropic scattering; fvol(λ) and
fgeo(λ) are spectral constants, i.e., model anisotropic parameters that
weight the two BRDFs; R(θv,θs,Δϕ,λ) is BRDF in waveband λ.

Kgeo and Kvol have been derived from physical approximation of the
radiative transfer at the surface. Kgeo is derived from the GO model (Li
and Strahler 1992; Roujean et al. 1992) and characterizes dome-shaped
BRDF curves. It is a function that describes the shadowing and surface
scattering from the canopy. The operational MODIS BRDF/Albedo
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algorithm adopted the LiSparseReciprocal kernel (KLSR) that was de-
rived from a sparsely-vegetated canopy surface.

KLSR ¼ O θv; θs;Δφð Þ− secθ
0

v− secθ
0

s þ
1
2

1þ cosξ
0! "

secθ
0

v secθ
0

s ð2Þ

Notably, where O(θv,θs,Δϕ) is overlap function of view and illumina-
tion shadows on the ground, and hence the hotspot effect (i.e., the prob-
ability of seeing the sunlit background from the same gap) is included in
this kernel. Further expressions and several intermediate variables are
detailed to several papers (e.g., Wanner et al. 1995; Lucht et al. 2000).

Notably, two ratios (h/b and b/r) for describing vegetation structure
are used to parameterize overlap function in KLSR. Here, h is the mean
height where a crown center is located, b is the mean vertical half axis
of the modeled ellipsoid, and r is the mean horizontal radius. These
two ratios are related to the hotspot effects in KLSR on vegetation can-
opy scale (Li and Strahler 1992). The operational MODIS RTLSR algo-
rithm adopts h/b= 2 and b/r= 1. In Fig. 2 (top), red dashed curve is
for h/b=2 and b/r=1.2, andmagenta dashed curve is for h/b=2.5 and
b/r=1. Fig. 2 demonstrates that, although these two ratios were in the-
ory related to the general hotspot effect in KLSR, they do not seem to be
very sensitive to the changes of hotspot effect at a reasonable range.

Kvol is a similar function that describes the volumetric scattering
component from canopy, based on an assumption of a single-scattering
approximation of the radiative transfer (RT) theory by Ross (1981). The
operational RTLSR model adopted RossThick kernel (KRT) derived from

a homogenously layered canopy with a large leaf area index (LAI)
(Wanner et al. 1995)

KRT ¼

π
2
−ξ

! "
cosξþ sinξ

cosθv þ cosθs
−

π
4

ð3Þ

This kernel characterizes bowl-shaped BRDF curves, but does not
consider the correlation between illumination and observation process-
es for the observed hotspot. In theory, the probability of observing a
sunlit component can be taken as the product of two probabilities:
one for the view line from the observer and the other for illumination
beam from Sun.When the view line and an illumination beam coincide,
the observer either sees the sunlit foliage or the sunlit background,
while the shadows of foliage and background are hidden from the
view. As a result, the correlation tends to be 1:1, as the illumination
and view directions get closer.

3.2. RTLSR hotspot correction

To consider the correlation between the view and illumination pro-
cesses, Maignan et al. (2004) corrected the KRT with a hotspot factor:

KRTM ¼

π
2
−ξ

! "
cosξþ sinξ

cosθv þ cosθs
% 1þ 1þ ξ=ξ0ð Þ−1
! "

−
π
4

ð4Þ

1+(1+ξ/ξ0)−1 is a simplified hotspot factor derived by Bréon et al.
(2002) from the theory on the calculation of an overlay function of the
intersection of viewed and sunlit leaf areas (Jupp and Strahler 1991).
This hotspot factor was used to correct KRT, thereafter named KRTM.
Here ξ is phase angle, ξ0 is a characteristic angle in relation to the ratio
of scattering element size and the canopy vertical density, which fol-
lows the range ξ0 = [1°,2°]. A ξ0 = 1.5° has been suggested as a typical
value representing a wide range of landscape conditions (Bréon et al.
2002; Maignan et al. 2004).

Note that the KRTM value near the hotspot direction will double rap-
idly (as much as KRT) as the phase angle ξ approaches 0°. To consider
hotspot variability, we specified a ξ0 = 3.0° for KRTM for a comparison
with the standard ξ0= 1.5° (Fig. 2). The results indicate that an increase
in ξ0 can increase hotspot width, but diverge from KRT beyond the
hotspot region compared with KRTC. Therefore, we do not further exam-
ine the ξ0 influence on hotspot-fits in this study, rather than adopt ξ0 =
1.5° as the most appropriate value. Here, the KRTM has a simplified fea-
ture whereby the variation in hotspot height and width is determined
by phase angle ξ.

For volumetric scattering kernel (Kvol), it is frequently required to
meet the empirical requirement of Kvol = 0 when both the viewing
and illumination geometries point to nadir. This requirement aims to
ensure that the isotropic parameter is physically reflectance for the
model retrieval (Roujean et al. 1992). Conversely, using the Maignan
method, the nadir-view and nadir-sun reflectance are specified as
R(0,0,0,λ) = fiso(λ) + fvol(λ) ×π / 4.

Here, we introduce themodified exponential function of the hotspot
kernel function to KRT, hereby termed the RossThickChen kernel (KRTC),
which includes two free parameters characterizing hotspot variations
(Chen and Cihlar 1997):

KRTC ¼

π
2
−ξ

! "
cosξþ sinξ

cosθv þ cosθs
% 1þ C1e

− ξ
C2

# $
−

π
2

ð5Þ

where1þ C1e
− ξ

C2 is themodified hotspot function. The two free param-
eters, C1 and C2, allow a large dynamic range of hotspot variation, and
thus facilitate the analysis of the variation of hotspot height and width
in fitting hotspot BRFs. For this retrieval, we also make an empirical

Fig. 2. LiSparseReciprocal kernel (KLSR) at SZA of 15°, 30°, 45° and 60° (top) and three
volumetric kernels in PP (bottom). In the top subplot, the red and magenta dashed
curves around the red solid curve are from different h/b and b/r ratios in KLSR. The red
solid curve is for the operational KLSR that adopts h/b = 2 and b/r = 1; red dashed curve
is for h/b = 2 and b/r = 1.2; magenta dashed curve is for h/b = 2.5 and b/r = 1. In the
bottom subplot, three volumetric kernels are for the operational RossThick kernel (KRT,
black curve), the Maignan kernel (KRTM with green solid curve for ξ0 = 1.5° and green
dashed curve for ξ0 = 3.0°), and RossThickChen kernel (KRTC) with C1 = 1 and C2 = 3°
(red dashed curve). The upwardly-shifted KRTC shapes with C1 = 1 and C2 = 3° (red
solid curve), C1 = 1 and C2 = 5° (blue dashed curve), and C1 = 0.6 and C2 = 3°
(magenta dashed curve) for a SZA = 30° are aligned with the KRT and KRTM for a
convenient comparison. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 4. Two hotspot parameters (top) as a function of 13 IGBP classes in terms of the timing of Jun.–Jul.–Aug./Dec.–Jan.–Feb. in the northern hemisphere to represent maturity and
dormancy season, respectively (opposite in southern hemisphere) in the red and the NIR bands. The corresponding average NDVI and fit-RMSEs (bottom) are presented as a
comparison. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. The globally optimized C1 and C2 values, and the fit-RMSEs derived from the entire POLDER BRDF data in 6 bands (top); the C1 and C2 values (middle) and the correponding fit-
RMSEs (bottom) for 15 underlying IGBP classes. The dashed lines (top right) present the relative fit-RMSEs (right ordinate) between Maignan method and RTCLSR model. 16 IGBP
classes are Evergreen Needleleaf forest (ENF), Evergreen Broadleaf Forest (EBF), Deciduous Needleleaf Forest (DBF), Deciduous Broadleaf Forest (DBF), Mixed Forest (MiF), Closed
Shrublands (CSh), Open Shrublands (OSh), Woody Savannas (WSa), Savannas (Sav), Grasslands (GrL), Permanent Wetlands (PWe), Croplands (CrL), Urban and Build-up (UBu),
Cropland/Natural Vegetation Mosaic (CNVM), Barren or Sparsely Vegetated (BSV). Snow and Ice (SI) is excluded from this study because of its strong forward scattering.
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Fig. 6. Comparison of the model predicted and observed hotspot BRFs for four IGBP classes for ENF,WSa, GrL and BSV in the red band. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. Comparison of the model predicted and observed hotspot BRFs for the entire POLDER BRDF data in red and NIR bands. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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adjustment to retain the isotropic BRDF model parameter, fiso, as the
corresponding nadir-view and nadir-sun BRF.

Originally, the KRTC hotspot function was derived from a theoret-
ical expression that accounts for the hotspot effect for a forest stand,
based on a geometric-optical model (Chen and Leblanc 1997). In this
specific scenario, C1, is linearly related to the difference between the
reflectances of the foliage and background at the wavelengths of in-
terest (Chen and Cihlar 1997). In deriving this hotspot kernel, Chen
and Leblanc (1997) demonstrated that this modification had very
similar shapes at within-crown and between-crown scales because
the gap size is scaled by the gap depth. For plane parallel layers of
leaves, the average gap depth is taken as the mean distance between
two layers of leaves and is related to the leaf area density. In this
hotspot function (KRTC), C1 is related to the magnitude of the hotspot
peak, while C2 defines the half width of the hotspot in relation to the
ratio of canopy height to the size of the predominant canopy struc-
ture. Notably for this study, to keep consistent with the original ker-
nel form, the unit of C2 is radians in terms of Eq. (5), but it is
converted into degrees in subsequent use to describe the hotspot
width.

Here, the KRTC kernel is empirically adjusted tomeet KRTC= 0 for the
nadir-view and nadir-sun geometries, which results in a downward
shift of kernel shape (Fig. 2, bottom). Note that this adjustment does
not affect the fitting ability of this model since the kernel shape is
retained. Fig. 2 aligns KRTC with KRT and KRTM for a convenient compari-
son. The results indicate that KRTC coincideswithKRT in the scatteringdi-
rection beyond hotspot region, and adjusts the hotspot height and
width by changing C1 and C2 (Fig. 2 bottom). A larger C1 value also indi-
cates a higher hotspot, while a larger C2 value indicates a wider hotspot.

3.3. Hotspot parameter retrieval and analysis

The inversion strategy for retrieving the three parameters of this lin-
ear BRDF model is to minimize the root mean square error (RMSE) be-
tween model predicted and observed BRFs. The full-inversion is a
simple matrix inversion that is independent of land surface types and
is performed pixel by pixel using all high-quality measurements avail-
able. Details are referred to the papers (Roujean et al. 1992; Lucht et
al. 2000; Shuai et al. 2008).

Fig. 7. POLDER observatoins (red points) and the reconstructed BRDF shapes byMaignan (green) and RTCLSRmodel (black) in 6 bands for the ENF as a function of phase angle in terms of
the sampling design (i.e., Fig. 1(a)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

141Z. Jiao et al. / Remote Sensing of Environment 186 (2016) 135–151



To derive the C1 and C2 values, we calculated fit-RMSEs to minimize
the model-observation fits using accumulated measurements in a close
vicinity to the hotspot direction (i.e., ξ ≤ 5°).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1
Robs θv; θs;Δφ;λð Þ−Rmodelðθv; θs;Δφ;λÞ

! "2

n−3

vuut
ð6Þ

where Robs (θv,θs,Δϕ,λ) and Rmodel (θv,θs,Δϕ,λ) are the observed and
model predicted BRFs near the hotspot region in the viewing and solar
geometries, θv, θs, Δϕ at wavelength λ, as in Eq.(1). We derived the op-
timized C1 and C2 values from the least RMSEs using the iteration step
size of 0.1 for C1 = [0.3,1.2] and C2 = [1.0°,10.0°]. This range of C1 and

C2 can ensure realistic hotspot variations while optimizing processing
time. Following this method, we retrieved the C1 and C2 values for the
entire POLDER database; including parameterizations by IGBP cover
type and phenological phase, respectively. To derive the optimal
hotspot parameter values, we constrain this model by accumulating
all measurements near hotspot direction (ξ ≤ 5°) for these two parame-
ter types, including all 15 IGBP classes, excluding ‘Snow and Ice’ and 2
phenological stages: (1) maturity and (2) dormancy.

We then compared the model predicted and observed BRFs near
hotspot direction by using scatterplots with regression lines. To display
model-observationfits,we examined themodel predicted and observed
BRFs as a function of phase angle for the selected observations for Ever-
green Needleleaf Forest type (ENF) for each of POLDER's reflective

Fig. 8. Comparison of the model predicted and observed BRFs (a–b), the intrinsic albedo values using RTLSR and RTCLSR model parameters (c–d), and intrinsic albedo values via using
RTLSR parameters to the RTCLSR model (e–f) for 2275 MODIS data sets in h20v11. The BSA has a SZA = 30°.
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bands. Details on how to derive the shaded area (Fig. 1a) are provided in
Appendix A. We also performed a comparison against finer resolution
in-situ data. To analyze the sensitivity of the hotspot parameters to
hotspot-fits in conjunction with the model parameters, we used simu-
lated BRDF shapes generated from the airborne CAR data set.

Finally, we examined the intrinsic albedos (i.e., White Sky Albedo
(WSA) and Black Sky Albedo (BSA)) and clumping index (CI) retrievals
betweenmodels. To retrieve CI values, wemade use of the algorithm by
Chen et al. (2005) and assigned a simplified geometry of 45° view zenith
angles in both the backward- and forward- scattering directions for the
corresponding principal plane hotspot and dark spot, respectively (Zhu
et al. 2012). Such a simplification is somewhat different from Chen et al.
(2005), which focused on locating the optimal view geometry to cap-
ture the dark spot. Since the three models are generally consistent in
fitting observations outside of the hotspot region, this simplification
would not affect the inter-comparison of CI retrievals between models.

4. Results

4.1. C1 and C2 values for POLDER

In this section, we assess the performance of the two hotspot param-
eters, based on the underlying IGBP class and two vegetation phenolog-
ical phases, based on a comparison of the model predicted hotspot BRFs
with observed BRFs derived from the POLDER BRDF database. For this
study, our analysis focuses on the RTCLSR and Maignan method.

4.1.1. Hotspot parameters in regard to surface type and phenology
Fig. 3 (top left) presents the globally optimized C1 and C2 values

(RTCLSR_GLOB) for 6 POLDER bands [490, 565, 670, 765, 865,
and 1020 nm]. These values indicate the variation trend of hotspot
parameters for the available POLDER BRDF database. In general, the
spectral variations of C1 and C2 present a highly negative correlation

Fig. 9. Comparison of Maignan with RTCLSR model using CAR/SCAR-B cerrado measurements in principle plane in the red and the NIR bands. We elaborate on the differecnes between
these two models in terms of three cases: (a) and (b) show RTCLSR with the optimal C1 and C2 in case 1; (c) and (d) show RTCLSR using C1 = 1 and C2 = 3° as default values in case
2; (e) and (f) adjust RTCLSR model to approach to Maignan result for deriving the opitimal C1 and C2 values in case 3. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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(R2=0.58). This indicates that a higher hotspotmagnitude also tends to
go with a narrower shaped hotspot, and vice versa. Fig. 3 (middle) pre-
sents the optimized C1 and C2 values derived for underlying IGBP classes
in the red and NIR bands. Results indicate that the C1 values in the red
band are larger than in the NIR for all IGBP classes; indicating that the
hotspot height is relatively prominent in red band. This is due to the
higher-level chlorophyll absorption of vegetation foliage in the red
band, which strengthens the sunlit-shaded component contrast, and re-
sults in a more prominent reflectance anisotropy. The C1 values are sig-
nificantly different between some IGBP classes; particularly in the red,
and exhibits a high correlation between the red and the NIR (R2 =
0.62). This reveals that a higher hotspot in the red band is frequently ac-
companied by a higher hotspot in theNIR band. However, the C2 param-
eter presents a low correlation between the two bands (R2 = 0.21),
indicating that hotspot width is not band-dependent for these BRDF
data.

Fig. 3 (top right) shows the near-hotspot fit-RMSEs (ξ b 5°) between
models in 6 bands. Results indicate that the fit-RMSEs are lower in the
visible than in NIR and shortwave infrared (SWIR). As expected, the
RTLSR model had the largest fit-RMSEs in the vicinity of hotspot direc-
tion. We also derived globally optimized fit-RMSEs (RTCLSR_GLOB) for
the entire POLDER data and the IGBP-bounded fit-RMSEs
(RTCLSR_IGBP). The absolute average difference (AAD) of the fit-
RMSEs (left ordinate) between Maignan and RTCLSR_IGBP models
was 0.0023 per band, while the relative average difference (RAD) of
fit-RMSEs (right ordinate) between these two models was ~20–30% in

the blue, red and NIR bands [490, 670, 765 nm]. This reveals that the
RTCLSR model with the two free parameters can provide further im-
proved hotspot-fits. Fig. 3 (bottom) presents the fit-RMSEs for 15 IGBP
classes between models in the red and NIR bands. Some improvements
occur for several IGBP classes using the RTCLSR. The improvements
seem more pronounced for forest than for herbaceous classes in the
red band, while the opposite appeared to be the case in the NIR band.

To examine the phenological response of C1 and C2 values for surface
type, we used mid-high latitude (23.5° ≤ latitude ≤ 60°) POLDER data in
terms of the timing of Jun.-Jul.-Aug. and Dec.-Jan.-Feb. in Northern
Hemisphere to represent maturity and dormancy seasons; using oppo-
site time periods in the Southern Hemisphere. The C1 and C2 values
were then retrieved for each IGBP class in the red and NIR bands. Fig.
4 shows that vegetation cover tends to have larger C1 and C2 values in
maturity, but less C1 and C2 values in dormancy in the red band. In the
NIR band, vegetation cover mainly captures less C1 but larger C2 in ma-
turity and larger C1 but less C2 in dormancy. Interestingly, these hotspot
parameter values indicate that vegetation cover mainly captures a
higher andwider hotspot inmaturity, but a lower and narrower hotspot
in dormancy in the red band. In the NIR band, vegetation cover mainly
captures a lower but wider hotspot in maturity, and a higher and
narrower hotspot in dormancy. Such hotspot behaviors should result
from the leaf-on and leaf-off status in combination with spectral multi-
ple scattering effects within vegetation canopy in red and NIR bands.
This provides direct evidence on the spectral variability of the hotspot
effect with respect to vegetation phenology.

Fig. 10. Using CAR SCAR-B forests to examine the difference between model predicted and observed BRFs in PP (top) and the difference between RTCLSR and Maignan over the entire
viewing hemisphere (bottom) using Flight # 1689 in the red (c) and using Flight # 1693 in the NIR (d). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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As a comparison, Fig. 4 (lower left) presents the average NDVI as a
function of these IGBP classes in maturity and dormancy seasons.
NDVI values are generally bigger in maturity than in dormancy for
most IGBP classes. This indicates that the selected IGBP classes for this
phenological analysis are mainly in a leaf-on and leaf-off stage, respec-
tively. Notably, the NDVI values are very close for few classes (e.g.
Shrubland, Woody Savannas and Urban), likely due to the lack of
green foliage across classes. Fig. 4 (lower right) presents the fit-RMSEs
by the RTCLSR model for maturity and dormancy seasons in the red
and NIR bands. The fit-RMSEs are chiefly higher in the NIR than in the
red, but do not show significant differences between these two seasons.
This comparison reveals that NDVI alone doesn't distinctly capture this
type hotspot variation aswas detailed by using two hotspot parameters.

4.1.2. Hotspot BRFs
The scatterplots in Fig. 5 show the agreement between model-pre-

dicted and observed hotspot BRFs in the red andNIRbands for the entire
POLDER database. The correlations between the two are very high
(R2 N ~0.90) in both the red andNIR bands. In the red band, theMaignan
method slightly underestimates the hotspot BRF; particularly at a range
of low reflectances (i.e., bias = −0.005 for BRFs b 0.1), but overesti-
mates hotspot BRFs at a range of high reflectances (i.e., bias = 0.011
for BRFs ≥ 0.4). In the NIR band, the Maignan method overestimates
hotspot BRFs by 0.014 units at a range of BRFs ≤ 0.3, and by 0.008 at
range of BRFs N 0.4. These biases are slightly corrected by using the

RTCLSR model. Although the RTCLSR model with two free parameters
fits the hotspot BRFs a little better than theMaignanmethod, the differ-
ences between them in fitting observed BRFs in the close proximity of
hotspot direction (i.e., ξ ≤ 1.5°) were minor.

To further examine these two models in fitting hotspot BRFs as a
function of surface types, we selected 4 IGBP classes to reflect a forest,
mixed, grass, and sparsely vegetated gradient representing different
canopy physiognomies and structures (Fig. 6). In the red band, the
Maignan method tends to underestimate the hotspot BRFs by
0.014 units for the ‘Evergreen Needleleaf Forest’ (ENF) class. The under-
estimation is reduced to 0.011 units for the ‘Woody Savannas’ (WSa)
class, and the model fits well (underestimates by 0.003) for the ‘Grass-
lands’ (GrL) class; but somewhat overestimates by 0.009 units for the
‘Barren or Sparsely Vegetated’ (BSV) class. The relative average differ-
ence (RAD) between these two model reaches to 12% for ENF class.
These biases are generally corrected by using the RTCLSR model (Fig.
6). In the NIR band, the biases in reconstructing hotspot BRFs by
Maignan method are −0.007 for ENF, 0.001 for WSa, −0.017 for GrL,
and 0.018 for BSV. These biases are reduced to the range from −0.001
to −0.003 by using the RTCLSR model. This demonstrates that the
RTCLSR model can provide further improvement for hotspot-fits for a
subset of IGBP classes.

To qualitatively compare the Maignan and RTCLSR models, Fig. 7
presentsmodel predicted and observed BRFs for the ENF class as a func-
tion of phase angle in the proximity of the principal plane in 6 bands.

Fig. 11. Scatterplots showing the difference between modeled and observed BRFs near the hotspot region (ξ ≤ 5°, red points) and for the viewing hemisphere (VZA ≤ 75°, black points),
using CAR Flight # 1689 in the red band (a, b) and CAR Flight # 1693 in the NIR band (c, d). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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We only use the observations fallingwithin the shaded area in Fig. 1 (a)
to approximate the principal plane. Data sources are marked on each
subplot with a SZA = 44.89° recording the hotspot direction. The
NDVI values can be directly derived from the data sources. The opti-
mized C1 and C2 values for the ENF class in the corresponding bands
are used for each data set. This figure shows that the Maignan method
and the RTCLSR model generally capture the hotspot signatures very
well for these POLDER data; however, Maignan method seems to over-
estimate the hotspot height and underestimate hotspot width in blue
band, but somewhat underestimate hotspot width in other bands for
this dataset. The RTCLSR model presents more flexibility for capturing
the hotspot observations. This is one of the key features of the RTCLSR
model; i.e., its ability to leverage the reciprocal nature of anisotropic re-
flectances to improve retrieval quality.

4.2. Hotspot parameter values for one tile of MODIS hotspot data

We retrieve two hotspot parameter values using one tile of MODIS
hotspot data (h20v11) (Table 2). In general, C1 values are larger in
lower reflectance, which indicates relatively prominent hotspot effects
due to lack of multiple scatterings from vegetation cover, which
shows a consistent variation tendency with two hotspot parameter
values for POLDER data. C1 and C2 values do not present significant dif-
ferences between threemajor land cover types in this tile, dominated by
savannas. However, the optimized C1 and C2 values present somediffer-
ences in the corresponding bands between MODIS and POLDER, likely
because MODIS hotspot data are derived only from one tile. From Fig.
1(d), we can also see that the BRDF shapes reconstructed using the
Maignan (green curve) and RTCLSR models (black curve) in the NIR
band are very close except for the hotspot peak. The optimal C1 = 0.4
for 2275MODIS data sets in this tile characterizes a low hotspot height,
compared with the Maignan method for this extreme example. Note
that the MODIS has difficulty in acquiring sufficient hotspot signatures
on a global scale. As such, analysis of potential scale inconsistencies

between MODIS and POLDER was not comprehensively performed
using current hotspot data.

As a further analysis, we use these optimal C values to reconstruct
hotspot BRFs, and then compare observed BRFs with the reconstructed
hotspot BRFs derived from the RTLSR and RTCLSR models (Fig. 8a–b),
within phase angle b5°. We also fit these high-quality observations, re-
spectively using RTLSR and RTCLSR methods, to calculate the intrinsic
albedo values (Fig. 8c–d). Notably, the results derived by the RTLSR
model represent the MODIS BRDF/Albedo product. However, MODIS
sensors don't capture the PP observations in most cases. This implies
that reconstructed hotspot effect is mainly impacted by the prior C
values, while the whole BRDF shape, except for hotspot region, would
stay the same due to lack of the observations in the proximity of
hotspot. In such a situation, we simplify the hotspot estimates by as-
suming that the routine RTLSR BRDF parameters can be directly used
to reconstruct the hotspot BRFs and to estimate the albedo through
use of the corrected RTCLSR model. We also compare the WSA values
and BSA values at SZA = 30° (approximately mean SZA for these 2275
data sets) based on such an assumption (Fig. 8f–g).

As expected, Fig. 8(a) shows that the RTLSR model generally under-
estimates the observed BRFs, especially for high-range hotspot BRFs
(BRFs N 0.2) because high reflectances tend to have a volumetrically
dominated scattering type that can be characterized by the KRT. The
KRTC, however, corrects such a bias in a reasonable degree (Fig. 8b).

Fig. 8(c–d) shows that although theRTLSR- and RTCLSR-fits for these
sparse 2275 data sets have somewhat uncertainties, the estimatedWSA
and BSA values for these two models using these 2275 datasets present
a good agreement,withR2 N 0.95 and a negligible bias. Fig. 8 (e–f) shows
the scatter plots derived by directly using MODIS BRDF parameters in
conjunction with the RTCLSR model. These two results show that the
corrected hotspot doesn't significantly impact the albedo estimates. In
summary, various examinations based on these sparse high-quality
MODIS observations present that the albedo values derived by using
the RTCLSR model does not present significant differences from that of
RTLSR model.

Fig. 12. Comparison of field soil measurements (top) and field old black spruce measurements (bottom) with three models.
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4.3. Results with in-situ and airborne data

We used airborne CAR SCAR-B cerrado and forest measurements
(Gatebe et al. 2016; Tsay et al. 1998), as well as two high-quality field
BRDF data sets (Irons et al. 1992; Deering et al. 1999) to evaluate the
RTCLSR approach. Measurements are limited in the proximity of the
principal plane, and hotspot observations are selected for ξ ≤ 1.5° ac-
cording to our sampling design (Fig. 1a). The CAR cerrado dataset was

collected on a forest-grass vegetation system that is known for its dis-
tinct hotspot signature in the red and NIR bands. Dense forest covered
by tall trees with a close canopy had two-flight measurements. For
these data sets, we only make use of the bandwhere the hotspot signa-
ture was the most prominent.

Using CAR SCAR-B cerrado measurements, Fig. 9 presents themodel
predicted and observed BRFs in the red and NIR bands (not shown for
the RTLSR model). We provide three specific cases to identify the

Table 1
Statistics of the clumping index values retrieved by three models.

Class Number RTLSR Maignan RTCLSR (RTLSR- RTCLSR)
/RTCLSR (%)

(Maignan-RTCLSR)
/RTCLSR (%)

Mean Std. Mean Std. Mean Std.

ENF 793 0.57 0.04 0.49 0.03 0.51 0.04 13.09 4.32
EBF 898 0.76 0.08 0.56 0.06 0.64 0.07 19.02 11.85
DNF 219 0.66 0.02 0.57 0.02 0.59 0.02 10.54 4.29
DBF 682 0.80 0.06 0.63 0.05 0.67 0.05 19.59 6.89
MiF 690 0.76 0.10 0.57 0.08 0.63 0.09 21.55 9.02
CSh 549 0.77 0.08 0.58 0.06 0.63 0.07 22.83 7.22
OSh 1247 0.86 0.10 0.68 0.10 0.74 0.10 16.31 8.68
Wsa 1035 0.83 0.06 0.62 0.06 0.68 0.06 22.49 8.32
Sav 734 0.87 0.06 0.67 0.06 0.74 0.06 17.64 10.11
GrL 1075 0.88 0.09 0.68 0.10 0.76 0.10 16.21 9.56
Pwe 21 0.95 0.06 0.65 0.05 0.77 0.05 22.29 15.68
CrL 960 0.89 0.07 0.67 0.06 0.75 0.06 19.55 10.48
Ubu 835 0.84 0.06 0.65 0.06 0.72 0.06 17.20 10.13
CNVM 727 0.89 0.06 0.66 0.05 0.75 0.05 19.00 10.94
BSV 1167 0.99 0.16 0.85 0.19 0.92 0.17 8.00 7.44

Fig. 13. The fitting errors as functions of C1 and C2 for the entire POLDER data in the red (left) and in theNIR (right), and thewhite points on the contour plots represent the least fit-RMSEs
with the optimal C1 and C2 values; themodeled hotspot reflectance as a function of C1 (given C2= 3°) using CAR data to simulate three BRDF sample sizes (12, 60 and 161 samples) in the
red band (bottom). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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potential difference between these two methods. Fig. 9(a–b) present
the optimalized C1 and C2 for the RTCLSR model for this specific data
set. Fig. 9(c–d) use the C1 = 1.0 and C2 = 3° as default values because
KRTC with the default C values captures a very close kernel shape with
KRTM (Fig. 2). Fig. 9(e–f) present two-model consistencies by adjusting
two hotspot parameters of the RTCLSR model to approach to Maignan
predicted shapes for this specific data set (observations not shown).
This comparison shows that the RTCLSR model with two free hotspot
parameters can approach to Maignan method to a very great degree.
Using CAR SCAR-B forest measurements, we compared the difference
between the model-predicted and observed BRFs in the principal
plane, and over the entire viewing geometries between two models
(Fig. 10). The difference in reconstructing the hotspot BRFs between
these twomodels are distinctly exhibited over the entire viewing hemi-
sphere. We further performed the statistical analysis for these two CAR
datasets for BRFs near the hotspot region of phase angle ξ ≤ 5° andwith-
in the viewing hemisphere of VZA ≤ 75° (Fig. 11). While these two ap-
proaches do not present difference for the entire CAR datasets, the

significant improvement occurs in recreating hotspot signatures using
the optimized hotspot parameters of the RTCLSR model for the RMSEs,
biases and correlation coefficients (Fig. 11).

Finally, we compared the RTLSR, RTCLSR, andMaignanmodels fits to
the field measurements collected from soil and vegetation surface (Fig.
12). A C1 = 0.4 and a C2 = 5.2° are the optimal values for the soil mea-
surements in the red, and C1 = 1.3 (C2 = 10°) and C1 = 1.0 (C2 = 8.0°)
capture the best hotspot-fits for the black spruce (Picea mariana) in the
red and NIR bands. Results indicate a significant difference between the
model-predicted hotspot BRFs for the soil and the black spruce surfaces.
The RTCLSR model with a C1 = 1.0 reconstructs the hotspot height for
the black spruce as same asMaignan method; but a C2 = 8.0° can char-
acterize a wider hotspot for matching this measurement in the NIR
band. The old back spruce captures amore prominent hotspot signature
in the red than in the NIR. For the in-situ data, the fit-RMSEs for the
RTLSR, the Maignan and the RTCLSR are 0.0073, 0.0067 and 0.0058 in
the red, and 0.0530, 0.0515 and 0.0506 in the NIR, respectively. Since
these models are consistent in fitting these measurements except for
hotspot region, the difference in overall fit-RMSEs results from their
hotspot effects.

4.4. Sensitivity of hotspot parameters

To examine the sensitivity of hotspot parameters to hotspot-fits, we
provide the plots showing the fitting errors (color contour) as functions
of C1 and C2 at each iteration for the entire POLDER sampled dataset in
the red and the NIR bands (Fig. 13, top). Results indicate that the C1
values are more sensitive to hotspot-fit than C2, because the fitting er-
rors change more rapidly along C1 than C2. For a given C2, fitting errors
present certain symmetry about C1 because large or small C1 values gen-
erate the comparable magnitude of fitting errors. The minimum RMSE
occurs at the optimal C1 and C2 values (the white point). Similar results
were found across IGBP classes.

Since the BRDF sampling can have an effect on the sensitivity of
model parameter retrievals for kernel-driven models (Lucht et al.
2000), we also examined the sensitivity of the two hotspot parameters
to the model parameters. To do this, we evaluated themodeled hotspot
reflectance as a function of C1 (taking C2 = 3° as the default value) for
three sample sizes (i.e., 12, 60 and 161 measurements) in principal
plane. These BRDF observations are sampled from the airborne CAR
cerrado measurements, which contained 29,160 BRF samples. In each
case, 6 uniformly-distributed observations in the vicinity of the hotspot
region (i.e., ξ ≤ 5°)were used, and the rest of the observations outside of
this hotspot region were randomly sampled.

Fig. 13 (bottom) presents the sensitivity of modeled hotspot reflec-
tance as a function of C1 in the red band (C2 = 3°). This figure demon-
strates that the BRDF sample sizes have a certain effect on the
sensitivity of the C1 values to the modeled hotspot BRFs, since the
hotspot BRFs as a function of C1 values presents varying slopes for
these three cases of BRDF sample sizes. This leads to slightly varying
C1 values, even when using identical hotspot observations for different
total BRDF sample numbers. However, the variation range of the
modeled BRFs as a function of C1 can effectively cover the observed
hotspot peak (i.e. HS_BRF = 0.23). Result also indicate that the modeled
hotspot BRFs, using theMaignanmethod, are sensitive to the total BRDF
sample numbers in this examination; but with a slight overestimation

Table 2
The globally optimized C1 and C2 values derived from one 10° × 10° tile (h20v11) of MODIS surface reflectance products (MOD09 and MYD09) in 7 reflected solar bands.

Band
(nm)

Band1
(620–670)

Band2
(841–876)

Band3
(459–479)

Band4
(545–565)

Band5
(1230–1250)

Band6
(1628–1652)

Band7
(2105–2155)

C1 0.7 0.4 0.7 0.7 0.6 0.7 0.7
C2 (°) 5.2 4.5 5.2 5.2 3.5 5.2 5.2

Fig. 14. Comparison of CI retrievals between models using POLDER data in the NIR band
(top) and in the red band (middle), as well as using MODIS data (bottom) in the red
and the in NIR bands. The dashed and solid lines represent the one-to-one lines and the
fitted lines, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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of the hotspot BRFs. This is consistent with result shown for the NIR
band when using MODIS, POLDER and CAR data.

This investigation demonstrates that the sensitivity of hotspot pa-
rameters is somewhat related to varying BRDF sample numbers,
which in turn tend to have an effect on model parameter retrievals.
This effect holds true even when using the same observations in the vi-
cinity of the hotspot direction (i.e., ξ ≤ 5°). This implies that the model
predicted hotspot BRFs using a set of optimalized prior C1 and C2 values
in RTCLSR model (combining KLSR and KRTC) would be sensitive to the
three model parameters (i.e., fiso, fgeo and fvol) to a certain extent that
the adjustment of hotspot BRF dynamics by three model parameters is
no longer effective. In such a situation, the two free hotspot parameters
in RTCLSR model provide an improved capacity to capture more accu-
rate hotspot signatures.

4.5. Influence on retrieval of intrinsic albedo and clumping index

To evaluate the performance of the RTCLSRmethod for potential ap-
plications, we evaluated the retrieval of intrinsic albedos and clumping
index (CI) from available POLDER andMODIS data. The BSA valueswere
calculated for SZAs ranging from 0° to 75° at the interval of 15°.In gen-
eral, the intrinsic albedo retrievals between the RCLSR and RTCLSR
models are in a very high correlation for both POLDER (R2 = ~1.0)
and MODIS (R2 N ~0.9) data (Fig. 8(c–f) for MODIS); with negligible
biases (b~0.0003 in red and b~0.0006 in NIR), while the difference in
CI values between models was rather significant (Table 1 and Fig. 14).
As compared with the RTCLSR model results, a major overestimation
of CI values occurs with the RTLSR model, but a slight underestimation
of CI values occurs with the Maignan method. This is attributed to the
difference in reconstructing hotspot BRFs between models. Fig. 14 ex-
hibits the scatter plots between models for ~11,632 CI values for 15
IGBP classes in the NIR (Fig. 14a–b) and the red bands (Fig. 14c–d)
using POLDER data. According to the CI inversion algorithm, the CI
biases between models (despite a high correlation, R2 = ~0.9) result
from biases in modeling hotspot BRFs. For most IGBP classes from POL-
DER data, about 20% of the relative average difference (RAD) in retriev-
ing CIs occurs between the RTLSR model and the RTCLSR model, while
about 10% of RAD occurs between theMaignanmethod and the RTCLSR
in theNIR (Table 1). In the red band (Fig. 14c–d), the RAD in CI retrievals
between theMaignanmethod and the RTCLSRmodel is generally small,
while it still remains about 20% between the RTLSR and the RTCLSR. For
the MODIS data, the RAD in CI retrievals arrive at about 6% and 12% in
the red and the NIR bands between the RTCLSR and the Maignan (Fig.
14e–f). Notably, we use more measurements in CI estimates because
we can, in theory, reconstruct the hotspot BRFs using two prior IGBP-
based hotspot parameter values that are derived from the high-quality
observations in Section 4.1.1. In addition, we merely compare the re-
trieved CI values between models following the objective of this
paper. To extensively validate these CI estimates with groundmeasure-
ments would require the expanded use of additional measurements be-
yond the ones used in this study.

5. Conclusions and discussion

In this study, we proposed a new method to correct the hotspot ef-
fects for the RTLSR model known for its use within the operational
MODIS BRDF/Albedo product. Themethodmakes use of the exponential
function with two free parameters (C1 and C2) to characterize hotspot
height andwidth.Our results indicate that, although theMaignanmeth-
od with no free hotspot parameters characterizes the hotspot effect in a
relatively high accuracy (particularly for POLDER), the RTCLSR model
can provide a further improvement in hotspot-fits. This is mainly attrib-
uted to the two free hotspot parameters that can be adjusted to reach
their optimal values for the near-hotspot measurements available. Fur-
ther analysis of the two hotspot parameters using hotspot data reveals
that the hotspot signatures are somewhat related to surface type and

vegetation phenology for available POLDER data. We found that the
hotspot height (C1) value is bigger in the red band than in the NIR
band for most vegetation types, indicating a more prominent hotspot
in the red band possibly due to the strong chlorophyll absorption of veg-
etation foliage.

The RTCLSR model is quite consistent with the other two models in
the intrinsic albedos retrievals, but is somewhat different in CI retrievals
through the use of the inversion algorithmof Chen et al. (2005). This re-
veals that the albedo retrievals using the RTCLSR would be consistent
with the archived albedo product using the routine RTLSR algorithm;
however, the RTCLSR model would provide more accurate hotspot sig-
natures that may lead to an improved understanding of vegetation bio-
physical parameter retrievals in relation to hotspot BRFs. In near future,
a potential work is planned to generate a routine Clumping Index prod-
uct with high time frequency in a global scale by using Chen's CI algo-
rithm in conjunction with the RTCLSR model. However, this needs a
frame to apply the high-quality MODIS BRDF parameters product and
further optimize two hotspot parameters (C1 and C2). Another issue is
when the high-quality MODIS BRDF parameters are not available, how
to develop a back-up algorithm for CI mapping with prior BRDF shapes.
A similar analysis of the RTCLSR with the MODIS hotspot data, airborne
CAR data and field measurements reveals the broad adaptability of this
new method for different spatial resolutions; however, further investi-
gation into the scale issue of hotspot effect using the RTCLSR model is
still a challenge mainly due to the lack of sufficient hotspot data at dif-
ferent spatial resolutions. Investigation into the sensitivity of these
two hotspot parameters shows that C1 is more sensitive to hotspot-
fits than C2. The total BRDF sampling design can also play a role on the
sensitivity of the hotspot parameters to hotspot-fits, because the total
sample numbers (even having a good distribution) can have an effect
on the model parameter retrievals, in particular the sparse BRDF sam-
pling cases typified by the MODIS retrieval.

The original design of the kernel-driven linear Ross-Li BRDF model
comprised a collection of kernels for different scenarios of land surface
types. Thus, kernel functions are derived from different assumptions
for vegetation canopy structures, and view and illumination geometries.
These assumptions may result in differences in modeling the radiation
field (Wanner et al. 1995) especially in the hotspot direction (Huang
& Jiao et al., 2012). Methodologically, the exponential approximation
of this hotspot kernel functionmay also be used to correct the other vol-
umetric scattering kernel (i.e., RossThin), because this exponential
hotspot function makes use of two free parameters (C1 and C2) to fit
hotspot signatures, rather than use surface biophysical parameters as
inputs to drive a theoretical hotspot model. The exponential function
form is rooted in gap probability theory and has been one of major con-
tributions to hotspot modeling (Qin and Goel 1995). The corrected vol-
umetric kernel can be combined with various geometric optical kernels
for potential applications. However, the use of multi-kernel combina-
tion models would require recalibration of the C1 and C2 parameters.
In addtion, it is methodologically possible to extend the application of
the linear hotspot factor, i.e., 1 + 1/(1 + ξ/ξ0) to the form of 1 + C1/
(1+ ξ/C2), so that the two free parameters (C1 and C2, capturinghotspot
height and width, respectively) allow more flexibility to fit the hotspot
measurements; however, this needs some similar assessments with did
for the KRTC.

In the situation where hotspot signatures are not available, the C1
and C2 values would need to be estimated on an a priori basis for it to
initialize an RTCLSRmodel inversion. This has been attempted by fitting
the hotspot data of several spatial resolutions via two means. Globally
optimized C1 and C2 values can characterize the overall accuracy of the
hotspot effect for certain satellite hotspot data, while variable-related
optimized C1 and C2 values can help explore hotspot variation as a func-
tion of some underlying variables such as surface type and vegetation
phenology. We found that a prior C1 = 1 and C2 = 3° provide a stable
initialized value in the RTCLSRmodel that is comparable in performance
to the Maignan method.
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Because the hotspot effect is very sensitive to the phase angle be-
tween the view and illumination in the retro-solar direction (Bréon et
al. 2002), its analysis for remote sensing applications requires a very
high geometric accuracy. This implies that it is especially difficult to cap-
ture accurate hotspot observations in field measurements due to the
shadows of the goniometer and sensors that must have a small enough
IFOV (e.g., ≤1°). Use of the field measurements with an IFOV = 15° in
this study aims to stress that the reciprocal nature allows the RTCLSR
model to acquire hotspot-fits with the least RMSEs for this data set.
However, with two free hotspot parameters determined a priori by
using enough hotspot data, this newmethod provides an improved un-
derstanding of the hotspot effect, and thus has potentials for certain
ecological applications in regard to the hotspot BRFs for complex het-
erogeneous environments.
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Appendix A. The shaded area in Fig. 1(a) contains four parts. As the
1st constraint, all observations fallingwithin the phase angle having
the radius ofR should be included in set A. Here,R=1.5° is used, but
R can be adjusted properly for different hotspot data

A ¼ ξ ξ≤Rjf g

To select the observed BRFs close to principal plane (PP) for visually
comparingwithmodeled BRFs in PP, we define the distance, H, which is
perpendicular to the principal plane, as the 2nd constraint. Obviously, a
less H value can select observations in the shaded area to get closer to
PP. This generates set B as follows. Here, H = 10° is attempted for
MODIS and POLDER data, but H = 1° is attempted for airborne CAR
and field data.

B ¼ φ jθv sinφj≤Hjf g

As the 3rd constraint, we should consider that, in a 2-D plot that ex-
hibits the observed BRFs in approximate PP, spurious visualizations,
particularly in the proximity of hotspot direction in PP, possibly result
from some observed BRFs that are not actually near hotspot region in
PP, e.g., a H = 10° without other constraints will allow the observed
BRFs in the unshaded sector domain taking Sun as the center (Fig. 1a)
to be exhibited as near-hotspot BRFs in PP. To remove these observa-
tions in 2-D plots that present observed and modeled BRFs in approxi-
mately PP (e.g., Fig. 1d), we define an intersection angle (θ) between
PP line and the line passing through Sun. (Fig. 1a), and derive set C
and set D as follows. Here, θ = 45° is attempted for these hotspot data
used in this study.

C ¼ φ
sinθ

sin π−φ−θð ÞN
θv
θs

&&&&

' (
∪ φ φ≥π−θj jf g

# $
∩ φ θv cosφbθsjf g

D ¼ φ
sinθ

sin θ−φð Þ b
θv
θs

&&&&

' (
∩ φ φbθj jf g

# $
∩ φ θv cosφNθsjf g

Finally, the shaded area in Fig. 1(a) can be derived by implementing
set operation for four sets above:

A∪ B∩ C∪Dð Þð Þ
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